IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Can fermions save large N dimensional reduction?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP10(2009)070
(http://iopscience.iop.org/1126-6708/2009/10/070)

The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 01/04/2010 at 13:37

Please note that terms and conditions apply.



http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/10
http://iopscience.iop.org/1126-6708/2009/10/070/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

PUBLISHED BY IOP PUBLISHING FOR SISSA

RECEIVED: April 28, 2009
REVISED: August 21, 2009
ACCEPTED: October 5, 2009
PUBLISHED: October 26, 2009

Can fermions save large N dimensional reduction?

Paulo F. Bedaque,® Michael I. Buchoff,® Aleksey Cherman® and Roxanne P. Springer’
@ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,
College Park, MD 20742-4111, U.S.A.

b Department of Physics, Duke University,
Durham NC 27708, U.S.A.

E-mail: bedaque@und . edu, mbuchoff@umd.edu, alekseyc@umd.edu,
rps@phy.duke.edu

ABSTRACT: This paper explores whether Eguchi-Kawai reduction for gauge theories with
adjoint fermions is valid. The Eguchi-Kawai reduction relates gauge theories in different
numbers of dimensions in the large N limit provided that certain conditions are met. In
principle, this relation opens up the possibility of learning about the dynamics of 4D gauge
theories through techniques only available in lower dimensions. Dimensional reduction
can be understood as a special case of large N equivalence between theories related by an
orbifold projection. In this work, we focus on the simplest case of dimensional reduction,
relating a 4D gauge theory to a 3D gauge theory via an orbifold projection. A necessary
condition for the large N equivalence between the 4D and 3D theories to hold is that certain
discrete symmetries in the two theories must not be broken spontaneously. In pure 4D
Yang-Mills theory, these symmetries break spontaneously as the size of one of the spacetime
dimensions shrinks. An analysis of the effect of adjoint fermions on the relevant symmetries
of the 4D theory shows that the fermions help stabilize the symmetries. We consider the
same problem from the point of view of the lower dimensional 3D theory and find that,
surprisingly, adjoint fermions are not generally enough to stabilize the necessary symmetries
of the 3D theory. In fact, a rich phase diagram arises, with a complicated pattern of
symmetry breaking. We discuss the possible causes and consequences of this finding.
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1 Introduction

In the large N limit, gauge theories can have the remarkable property of volume indepen-
dence. Under some circumstances, one or more of the dimensions of the spacetime in which
the large N gauge theory lives can be shrunk, while a large set of observables remain un-
changed. In theories where this volume independence works all the way to zero size, large
N volume independence opens up the prospect of relating four dimensional gauge theo-
ries to lower dimensional counterparts that can be studied by techniques only available in
D < 4, for instance light-cone quantization or quantum mechanical variational methods.
Also, it may be possible to numerically simulate the lower-dimensional theories at a lower
computational cost.

The first version of the observation of volume independence in gauge theories is due to
Eguchi and Kawai [1], who argued that four dimensional lattice Yang-Mills theory in the
large N limit is equivalent to a matrix model with no spacetime dimensions (a one plaquete
model). However, there are conditions that need to be satisfied for the volume independence
to hold. One of them is that no phase transitions occur as the size of the spacetime volume
changes. Unfortunately, in the case of pure Yang-Mills, a phase transition does occur as one
of the dimensions is shrunk below a certain critical size [2]. This is the finite temperature
phase transition leading to deconfinement, where the center symmetry is broken. Thus,
the reduction of the spacetime to one plaquete fails in this case. Some attempts were made
to engineer constructions that would avoid this problem: the quenching procedure [2],
the twisted model [3] and, more recently, the double-trace deformation [4, 5]. There are
indications that the quenching [6] and the twisting [7] procedures fail to protect center
symmetry near the continuum limit.



Parallel to these developments, a seemingly different kind of equivalence between large
N gauge theories was discovered. It was found that one can define ‘orbifold projections’
that relate a ‘parent’ gauge theory to a ‘daughter’ gauge theory, which is identical to the
parent except that all degrees of freedom not invariant under some discrete symmetry of
the parent theory are left out of the daughter theory. In the large N limit, provided that
certain conditions are met, there is then a class of ‘neutral’ observables in the parent and
daughter theories which are the same in both theories. The parent and daughter theories
are then termed to be ‘orbifold equivalent’.

Such orbifold equivalences were first discovered in string theory [8], but were quickly
realized to be purely field-theoretical effects [9]. Proofs of orbifold equivalence at the level
of perturbation theory can be constructed by analyzing Feynman diagrams [9, 10]. Orbifold
equivalence and related techniques such as orientifold equivalence have mostly been used
in the literature so far to relate supersymmetric and non-supersymmetric theories [11].

It was pointed out in ref. [13] that large N volume independence can be understood as a
special case of orbifold equivalence. Volume independence can be seen as a volume reducing
or a volume expanding transformation that leaves certain observables unaffected, and these
transformations can be viewed as orbifold projections. In viewing volume independence as
a special case of orbifold equivalence, one is forced to work with the large N gauge theory
defined on a lattice.

For dimensional reduction, one starts with a theory which has one spacetime direction
discretized on a lattice with I' points, and then projects by the discrete translation symme-
try Zr. Only the translation invariant fields survive the projection, so that the daughter
theory is effectively defined in one dimension less than the parent. In the volume expansion
case [12, 13], when one performs ‘dimensional reconstruction’, one starts with an SU(NT)
gauge theory containing some unitary, adjoint scalars, and projects it by a discrete Zr
symmetry acting on the color indices. If the action of Zr on the different fields is chosen
properly, the resulting daughter theory is a “moose” or “quiver” SU(N)' gauge theory
with bi-fundamental scalar fields. As is well known [14], such theories can be interpreted
as theories with one extra dimension discretized on a lattice with I" sites. The role of the
gauge links in the extra dimensions is played by the unitary scalars. The large N equiva-
lence between neutral quantities in the parent and daughter theories then amounts to an
equivalence between theories “living” in different dimensions.

A non-perturbative proof of large N orbifold equivalence determines the necessary and
sufficient conditions for its validity [15]. These conditions must be satisfied in both the
parent and daughter theories, and are i) unbroken center symmetry (confinement) and ii)
unbroken Zr symmetry, the symmetry used in the orbifold projection. The violation of the
first condition is what invalidates the original Eguchi-Kawai construction. Eguchi-Kawai
reduction is valid as long as center symmetry would be unbroken, which is the case as long
as the large N theory lives in a volume larger than a certain critical size of order A(_QICD.
Numerical results support this statement [16]. The proposed modifications of the Eguchi-
Kawai construction such as the quenched and twisted models, as well as the double-trace
deformed models, are attempts at preserving the symmetries necessary for large N volume
independence (or orbifold equivalence) for volumes smaller than this critical size.



In this paper, we will focus on the simplest case of dimensional reduction, and relate
a 4D gauge theory to a 3D gauge theory by an orbifold projection. We will consider the
effect of adjoint fermion matter fields on the realization of the discrete symmetries neces-
sary for orbifold equivalence to hold so that large N dimensional reduction can work. It
has been suggested that adjoint fermions can prevent center symmetry breaking [13] when
a compactified spatial direction gets small in a 4D theory.! This suggestion was motivated
by examining the behavior of the effective potential of a traced Wilson loop wrapping a
compact spatial direction in the 4D theory, which is a gauge-invariant order parameter for
center symmetry breaking. In the limit where the circumference of the compact spatial di-
rection is small compared to A(SICD, the effective potential can be calculated perturbatively.
It was found that at one-loop order, the gauge boson contribution to the effective potential
favors center symmetry breaking, while the contribution of each flavor of adjoint Majorana
fermions is equal and opposite to that of the gluons, and favors the preservation of center
symmetry. The observation of this behavior in a 4D theory motivated the suggestion that
4D YM theories with adjoint fermions in the large N limit have volume independence to
zero size, so that one can construct dimensionally reduced theories, for instance 3D ones,
that are equivalent in the large N limit to 4D theories due to orbifold equivalence [13].

To be sure that large N volume independence really holds to zero size in YM theories
with adjoint fermions, however, it is necessary to check whether the necessary discrete
symmetries are realized appropriately in the dimensionally reduced theory as well as in the
4D theory. First, both the 3D and 4D theories should be in a confining phase, which is
expected to be the case provided that both theories live in large enough spacetime volumes.
(Of course, as ref. [13] showed, the 4D theory stays in a confining phase even in small spatial
volumes if adjoint fermions are present.) Next, the discrete Zr translation symmetry along
the compact direction of the 4D theory must not be broken spontaneously. Fortunately,
translation symmetry is not expected to break spontaneously in gauge theories like the
ones that we are considering.? Finally, it is crucial that the Zr symmetry of the 3D theory
must also not be broken spontaneously for large N dimensional reduction through orbifold
equivalence to work. It is this last question that we will focus on in this paper.

In section 2 we engineer a three dimensional theory that, upon a volume-expanding
orbifold projection, leads to a latticized version of a four dimensional gauge theory with
adjoint fermions. In section 3 we compute the relevant effective potential and discuss the
spontaneous breaking of the Zr symmetry used in the orbifold procedure. The minimization
of this potential is discussed in section 4, and we find that, for most of the parameter space,
Zr is broken and the large N equivalence fails. We then discuss the origin and consequences
of this very surprising result.

! Adjoint fermions only help protect spatial volume independence, since they must have periodic boundary
conditions to protect center symmetry. When fermions have antiperiodic boundary conditions, they do not
help to protect center symmetry [13].

2 At non-zero chemical potential for baryon number in a large N theory, translation symmetry might
break spontaneously due to the formation of some kind of nuclear matter (for instance something like a
Skyrme crystal of baryons) at a certain critical value of the chemical potential.



2 Dimensional reconstruction and fermions

In this section, we construct a 3D theory which will be related to a 4D YM theory with
adjoint fermions, and discuss its relevant discrete symmetries. We then apply a volume-
expanding orbifold projection to the 3D theory, and show that the projection produces a
4D theory with adjoint fermions.

2.1 D =3 theory

We will start with our 3D theory, which will be the parent from the point of view of the
orbifold projection. This theory is engineered in such a way as to generate, after a volume-
expanding orbifold projection, a daughter theory which is 4D, SU(N) gauge theory coupled
to one flavor of adjoint Dirac fermions. The 4D theory will live on R? x S', and the circle
will be discretized on a lattice with I' sites. The fermions will have periodic boundary
conditions on the circle, so that we are considering a spatial compactification in the 4D
theory.

Since the 4D theory will have fermions and will be defined on a lattice, a naive dis-
cretization of the fermions will lead to fermion doubling in the continuum limit. To prevent
doubling, we will engineer the 3D theory to give rise to a 4D theory with Wilson fermions,
as it turns out to be easiest to work out the orbifold prescription in this case. As is well-
known, the Wilson term breaks chiral symmetry in the 4D theory, and induces an additive
renormalization of the fermion mass in the 4D theory. This means that we also have to
introduce a bare quark mass term, so that the 4D theory can have light fermions in the
continuum limit if the bare quark mass is tuned appropriately against the Wilson term
coefficient.

The 3D theory is a SU(NT') gauge theory coupled to one adjoint unitary scalar and a
pair of adjoint fermions. We work in Minkowski space with the mostly minus metric. The
action of the 3D parent theory is

1 1 .
Sp = Fa/d333 tr [—29215’2 + WUJQM2 + x(ip® Dy + mr)x

L ) B R R O] I CRY
where a = 0,1,2, p* are the 3D Dirac matrices, the D, are covariant derivatives in the
adjoint representation, y is a doublet of two-component 3D adjoint Dirac fermions, 7!
and 73 are the Pauli matrices 01,03 acting on the x flavor space, and ¢ € SU(NT) is a
unitary scalar field. The constants g, a, I' and » will turn out to be, respectively, the 4D
dimensionless coupling constant, lattice spacing, the number of lattice points in the fourth
direction, and the coefficient of the Wilson term. To make the behavior of these fields once
we move to the 4D theory more transparent, we have written the 3D action above in terms
of fields with mass dimensions normalized according to the usual 4D conventions.

The kinetic term of the scalar ¢ will generate the gauge-kinetic terms in the x3 direction
after the orbifold projection. Note that somewhat surprisingly, the would-be Wilson term
(the term proportional to r/a in the action) has the same mass dimension as the would-be



z3 kinetic term for the fermions (the term proportional to i/a) in the 3D action eq. (2.1).
It will turn out that upon orbifold projection, these two terms will behave differently, and
the Wilson term will become a dimension 5 operator in the 4D theory, as it must.

We use the D = 2 + 1 Dirac matrices defined as

0 _ 43,
L — o2,
2 = —iot, (2.2)

where the ¢ are the Pauli matrices.
The action in eq. (2.1) has a discrete Zr symmetry which acts on the fields as

A — yAq,
X — 1x7',
¢ — wypy', (2.3)
where w = e% and
1y
wlN
v = w1y : (2.4)

wF—l 1N

where 1 is the N x N identity matrix. This Zr symmetry will be the symmetry used to
define the orbifold projection.

2.2 Orbifold projection to D =4

The volume-expanding orbifold projection amounts to dropping all degrees of freedom in
eq. (2.1) not invariant under eq. (2.3). The only surviving components of the gauge and
fermion fields are in the N x N diagonal blocks, while the surviving degrees of freedom of
the scalar field are in the N x N one-off-diagonal blocks.

Ay X1 ¢1
Ay X2 o)
A— A3 , X— X3 , O— ®3 . (2.5)

Ar XT ¢r

The action of the daughter theory is, up to a factor, the orbifold-projected action of
the parent (3D) theory Ss:

-1
1 n
S3[A,¢.x] = SplAr,---Ar,dr---droxa o xr] = ¢ > Sply Ay A XA, Wy ey

n=0

(2.6)



When valid, the orbifold equivalence states that, to leading order in 1/N, the corre-
lators of neutral operators in the parent (that is, operators invariant under the the Zr
transformation in eq. (2.3)) agree with the correlators in the daughter theory. An exam-
ple of a neutral operator in the 3D theory is tr¢", which is a Wilson loop wrapping the
compact S! direction from the point of view of the 4D theory.

In the case of the action Sp in eq. (2.1) we have the daughter theory action

I
Sp = /d% a) Tr [—Mlﬁgﬁwﬁ + C12—‘(]2|Da¢1~|2 + Xi(ip® Do + m7Y) x; (2.7)
=1
Cio gt ato 3 " (bl — vt ) T
—%(Xz‘@—@xz'ﬂﬁ (Xi¢i+¢iXi+1)+%(Xi¢i_¢z‘Xi+1)7' (Xi®i— DiXit1) | »

where

Dagi = Oati +i(AlL ¢y — p;ALT),
DaXi = OaXi + Z[Azon Xi]' (28)

The action in eq. (2.7) is the action for a 4D gauge theory discretized in the compact 3

direction, with the unitary scalar ¢; as the i-th link variable in the 23 direction. In fact,

writing ¢; = €¢/*3() we see that the kinetic term for ¢ is a discretized version of Fas:

Dodi = Oagi + iALd; — igi AL

oA Al o o )
~ iq <8OA§ - % +i(ALAY — AéA?U) ~ jalF! s, (2.9)
Similarly
r
Z()&HT%ZT)@@ — T bixi10]) = 2iaxiT® Dsy. (2.10)
=1
and
r
Y i el xidi + i dim i) — 20T ) = —a’xr! (Ds)’x. (2.11)
i=1

We now define the four-component 4D Dirac spinor ¢ by

1
X
= 2.12
v (03X2> , (2.12)
and the 4D Dirac matrices in the chiral basis in terms of the 3D Dirac matrices as
0 o+
= , 2.13
g (w 0 ) (2.13)

with o# = (1,5) and 6" = (1,—&). Essentially, the 3D Dirac spinors become 4D Weyl
spinors in the orbifold construction.



With the identifications above, we see that in the small a limit the action in eq. (2.7)
becomes

Sp = / d*z tr [—21921?2 + % (iv* Dy, + m)Y — %ng/mw +0(a?)] . (2.14)

As promised, the orbifold projection takes a theory defined in 3D and generates a 4D
theory, with the Wilson term becoming an irrelevant dimension 5 operator, as it must.
The 4D theory has gauge group SU(N), in contrast to the SU(NT') gauge group of the 3D
parent theory. The spatial extent of the reconstructed 3 direction equals L = I'a and thus
can be adjusted by tuning the parameters of the 3D theory.

It is possible to adapt the construction above to accommodate 4D theories with Ma-
jorana fermions, such as N/ = 1 Super Yang-Mills theory, which has one flavor of massless
Majorana adjoint fermions.® To do this we can impose the condition o?(x!)* = o3y? in
eq. (2.12), so that the 4D Dirac spinor written in terms of 3D spinors has the form

1
Y= <o§<><1*) ; (2.15)

and becomes a 4D Majorana spinor. Setting o?(x!)* = 032, the action S3 becomes

joran. 1 1 — *
Sy erans — Fa/d3xtr {—QQQF%W\Da¢\2+2xwo‘Dax+m(><T02x +x"o?x)  (2.16)

(D oS 0 =[x o THX cﬂ*)—%([x*, o11Ix", g+ [x. o"x. @) |

i
a
where now x does not carry any flavor indices.

3 Large N equivalence and the effective potential

For the 3D theory to be orbifold equivalent to the 4D theory in the large N limit, two basic
conditions must be met. First, both theories must be in their confined phases, and second,
the symmetry that defines the orbifold projection, in our case the Zp symmetry in eq. (2.3),
must remain unbroken in the parent theory. We expect the 3D theory to be in a confining
phase as long as it is defined in a large enough 3D volume. The 4D theory is expected to
be in a confined phase when L = I'a is large enough, and also when L < AééD because of
the presence of the adjoint fermions [13]. The crucial question that will determine whether
large N orbifold equivalence between the two theories is valid is whether or not the Zr
symmetry of the 3D is spontaneously broken.

A set of gauge invariant order parameters for the Zpr symmetry is comprised of the
expectation values of the traces of powers of ¢, (tr¢*), for k = 1,--- ,I". The information
encoded in the I' quantities (¢"*) is also encoded in the eigenvalues of ¢ (but not in their
ordering, which is a gauge-dependent quantity). We will investigate whether Zr is sponta-
neously broken by calculating the effective potential for the eigenvalues of ¢. Actually, we

3Supersymmetry would be broken by the lattice discretization.



will do a more general calculation. We can diagonalize ¢ through a gauge transformation
Q as ¢ = Qpof, where ¢ is diagonal:

ei@l
ei‘p2

bo = . : (3.1)

ei(PNF

In order to test for Zr breaking, it would be enough to consider a ¢¢ with only I' distinct
eigenvalues, so that ¢y has a ‘block diagonal’ form if they are properly ordered. We will,
however, consider the more general case where all eigenvalues can be different, and test for
the breaking of the full Zyp symmetry defined by eq. (2.3) with w = ¢*™/NT" and

NI'-1

The effective potential for the eigenvalues of ¢ will then determine how the Z yr symme-
try and its Zr subgroup are realized. Of course, the computation of the effective potential
for (tr¢*), or equivalently for the distribution of the eigenvalues of ¢, is in general a difficult
non-perturbative problem. However, we expect the relevant scale for the renormalization
of g to be the size L of the “extra” dimension,* as this is the case for gauge theories in
R3 x 81, For L = al’ <« AééD, where Aqcp is the strong scale of the 4D theory, we ex-
pect a semiclassical approximation to be valid, and we will compute the one-loop effective
potential for the Zyr symmetry.

The one-loop effective potential will be given by the small (quadratic) fluctuations
around ¢ = ¢g. A perturbative calculation like this requires gauge fixing, and we will use
R gauge. We parametrize the ¢ field by ¢ = e'Cpoe~"C, where the G’s are the would-be
Goldstone bosons.

Gauge-fixing amounts to the addition to the lagrangian of
1 oF
_ = Tyal 2
L—L 2FF +c< 6@)6’ (3.3)

where ¢, ¢ are the Faddeev-Popov ghosts. We choose the gauge fixing function F' to be

§

b £
a?

F:g\/g[a.A—

G, ¢0] . (3.4)

After gauge fixing, the part of the lagrangian quadratic in A, d¢g, G and bilinears in

4The only other scale available in the 3D theory is a < L.



C,c, is

1 uadratic 1 o 1 1
Lt = —3t <28aA58 AP —2(0.8) + (A, dol[A, ¢]] - £[0-, 60][0.A, ¢$]>
1
~samrtr (106.0ulo8. o) - 516l o)
1
+tr6(—82—a€2> [C, ¢0] + Wtr|8gbo|2
Fr(ip” Do+ mr)x = 5[0 607 (.60} = o[ ol Do dol. (35)

The would-be Goldstone bosons in G pick up a gauge dependent mass mé ~ £/a?, the
ghosts pick up a mass m2 ~ &/a? and the longitudinal components of the A that gets
higgsed also pick up a mass mi ~ &/a®. The transverse components of the higgsed A’s (we
shall call them TW’s) pick up a real mass my ~ 1/a and the fermions x also get a mass
my ~ m + 1/a. The precise values of these masses depend on the value of ¢g. To find
them, let us parametrize the adjoint Hermitian fields as A = A%\, with trA\®\b = %5“”, and
similarly for G, x, ¢ and ¢. We need to evaluate terms such as tr(/\agbg)\bgbo), which is easiest
to do by considering the decomposition of SU(NT') into its SU(2) subgroups. It is not hard
to show that if A, Ay belong to different SU(2) subgroups, or to the Cartan subalgebra, they
do not make a ¢y dependent contribution to the effective potential. This means that we only
need to consider a sum over SU(2) subgroups with A,, A, belonging to the same subgroup.

To show how this works, we will temporarily work with NI' = 2; the generalization
to a general SU(NT') gauge group is straightforward and will be done at the end of the
calculation.

We will need the following traces:

3 cos(d1 — ¢2) 5 sin(¢r — ¢o)
tr(A"piA ¢0) = | —5sin(p1 — ) L cos(dr — o)
0 0

O v o o

sin(¢p1 — ¢2) 0
tr([A%, @h1{AY, o)) = tr(A%oiA ¢ — X%poAY) = | sin(¢y — ¢o) 0 0|, (3.6)

0 0 0
tr([A%, @] (A%, do]) = tr(AGIA do + A%GoA’dl — 227 AP)
cos(p1 — ¢2) — 1 0 0
= 0 cos(¢p1 — ) — 10
0 0 0

Using eq. (3.6) we see that only the 1 and 2 components of the fields are affected by
¢o and pick up a ¢g dependent mass, so we will drop the 3" component from now on. We



arrive at

1 ! 0 4 oy 1 »
Faﬁgﬁggratic - 72792 Z tr <aaAzﬁaaAw - (3.A’)2 + ﬁ(cos(gpl — ) — 1) AL A
i=1,2
1 o
— g leosler = 92) - 1)8.A%5.A1>
~oggz(cospr —¢2) = 1) > (e - ~a6ia

i=1,2

+eos(pr — p2) — 1) 3 @02 — 5)

)
i=1,2 a
i ;o _ _
+ D X(ip" Do +mrh )X = o= sin(pr — 92) (V7% = XX
i—1,2

’r' _ .
5. (cos(pr — ) = X’ N (3.)

where the superscripts in x!'? denote adjoint color, not flavor.
The propagator for the color components 1 and 2 of the gauge fields can now be shown
to be

1 ko k kk ¢
1D, (k) = e ”) + £ . (3.8
po () k2 _ % <g“ k2 k2 (1= cos(p1 — @2)) (k2 — a%) (38)

The two physical, transverse degrees of freedom have a £-independent mass. The unphysi-

cal, longitudinal component has a £-dependent mass and wave function normalization. This
mass (and wave function normalization) is identical to that of the would-be Goldstones and
of the ghosts. Counting the unphysical degrees of freedom (d.o.f.) we have 2 gauge d.o.f., 2
Goldstone d.o.f., and 2 ghost d.o.f. As the ghosts contribute to the effective potential with
an additional factor of —2, the contribution of the unphysical degrees of freedom to the
effective potential cancels out. We are left with the physical degrees of freedom: 4 gauge
field d.o.f. (from two adjoint colors and two polarizations) and 4 fermion d.o.f. (from two
adjoint colors and two “flavors”). The Higgs field contribution does not depend on ¢y, so
we can ignore it. The one-loop effective potential will depend on ¢ only through the value
of these physical masses and will, consequently, be £ —independent.
The bosonic contribution to the effective potential can now be shown to be

3 _ _ 3/2
4/ dk log K2 — 3 sin? LA = 4 2sin? b S ,
(2m)3 a? 2 6ma’ 2

where we have used the dimensionally regulated and minimally subtracted integral

3 i
i/ (;lﬂl;g log(k? — M?) = ¢§(M2)3/2. (3.9)

At this point, one might worry that the integral above might have an infrared divergence
for some distributions of eigenvalues, since the M? of the bosons vanishes for ¢; = 5. This
is a serious issue in a full Eguchi-Kawai reduction to a D = 0 one-plaquette model, where

~10 -



the contribution of the gauge bosons to the one-loop effective potential becomes singular,
and one must examine higher order corrections to the effective potential to make reliable
conclusions [17].5 However, the integral above for D = 1,2, 3 is IR-finite and well-behaved
as M — 0, so that this issue does not arise for D > 0.

The dispersion relation for the fermions can be found in a similar way, where we
continue to work with the NT' = 2 example for clarity. We find

iﬁx _ / d°k }(,1 2) F+ (m+ (1 - cos))r? —Lsin73 x*
Ta quadratic — (27‘_)3 ) X X éSiIl 7_3 }{7—|— (m n 5(1 _ Cos))q-l X2

M

(3.10)
where we define the shorthand notation cos = cos(p1 — ¢2) and sin = sin(¢; — p2) and the
indices on y!? refer to color space. The fermion matrix can be written as

= <;é + (m + 2(1 - cos)71>>11 + 281117322 (3.11)

with T and ¥? = 02 acting on color space. The fermion contribution to the effective
potential is given by the Tr Log(M) and can be calculated as

Tr LogM = / trcolortrﬁavortrspm log M

:4/(;?;31% <k2— <(m+2(1—cos)>2+ (isin>2>>

3/2
9 2
= [(ma + 2rsin <(’D1 5 (’02>> + sin? (¢ — g02)] . (3.12)

3mad

Above we used relations like
trpin log(f + A) = log(k? — A?). (3.13)

Adding up the gauge boson and fermion contributions to the effective potential we find

2
<ma+2r sin? <8012<P2>> +-sin?(p1 — o)

3/2
Vj{U(z)(%) 4\[| sin <901 5 @2) ’3

It is straightforward to generalize the calculation outlined above to the SU(NT) case,
with the result that

%ﬂ(¢0):37:17 Z f|Sl< 2%>| ‘(ma+2rsin2(%2%)> +sin’(p; — ;)

i<j=Ll,.,NT

3/2

(3.14)
This is the main result of this section.

5We thank Larry Yaffe for bringing this issue to our attention.
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4 The phase diagram for Zyr symmetry

A few observations about the effective potential in eq. (3.14) can help us gain insight into
the result. First, let us consider the purely bosonic case. In this case the effective potential

sin <‘P;%) ‘3. (4.1)

It is clear that the effective potential is minimized when all of the eigenvalues are degenerate

reduces to

Vet (d0) = 47\/53 >

3ma
i<j=1,..,NT

and (tr ¢f) # 0. This ground state breaks Zyr maximally, down to nothing. In particular,
the Zr symmetry used to define the orbifold projection is spontaneously broken, which
implies that the equivalence between the large N dynamics of the 3D and 4D theories is
lost. This conclusion agrees with the standard belief that the Eguchi-Kawai reduction for
pure YM breaks down if one (or more) dimensions are shrunk down to one plaquete.

Let us now look at the fermion contribution to the effective potential. First, note the
surprising fact that the Wilson term coefficient shows up in the effective potential, and does
not disappear in the small ¢ limit. This can be traced back to the fact that the 3D progen-
itor of the 4D Wilson term shows up at the same order as everything else in the 3D action,
even though the Wilson term is an irrelevant operator in the 4D theory. The effective po-
tential of the 3D theory thus depends strongly on the value of the Wilson term coefficient.

Next, note that the fermion mass will be additively renormalized from its bare value
by loop contributions due to the couplings of the fermions to the gauge field. Those effects
are higher order in g% and are not reflected in eq. (3.14). The renormalization of the mass
would show up at two-loop order in the calculation of the effective potential. Thus, at
the order to which we are working, the parameter m in eq. (3.14) can be viewed as the
“fermion mass” (with the obvious issues relating to the proper definition of fermion mass
in a confining theory applying).

Now we must ask what region in the parameter space of the 3D theory can correspond
to a continuum 4D theory, assuming that the orbifold equivalence is valid. The continuum
limit in the 4D theory corresponds to sending a — 0,I" — oo in such a way that I'a = L is
fixed. This means that the lattice spacing a must be much smaller than any other length
scale in the problem, and in particular:

ma < 1. (4.2)

This means that we should only expect to have our 3D theory to be equivalent to a
continuum 4D theory with fermions in a region in parameter space where ma < 1.

The general effect of the fermion contribution to Vg naively seems to counteract the
symmetry breaking effect of the gauge fields, as the bosonic and fermionic contributions
have opposite signs. For instance, for the special case ma = 0 and r = 1, where we
might hope that the equivalence should work, the potential between any two eigenvalues
is minimized when they are maximally separated (¢; — ¢; = £m). That does not mean,

i2min/NT

however, that the Zyr symmetric distribution of eigenvalues (where e'®" = e ,n =

1,---,NT) is favored, as the symmetric configuration does not minimize Vg for each pair
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Figure 1. Phase plot of one-loop effective potential with axes r vs. am in the large NT limit.
Configurations of the NT' eigenvalues distributed at 1,...,i..., NT points evenly spaced around the
circle were tested against each other, and the configuration with the lowest energy was determined
at each point in the plot above. We refer to the configuration with the eigenvalues distributed on
i points on the circle as the Z; configuration in the plot legend above. The purple region is the
region where the full Zyr symmetry is unbroken.

of eigenvalues. Vg can, instead, be minimized by having half of the eigenvalues equal 1
and the other half equal to —1. The energy lost by having pairs of identical eigenvalues is
more than compensated for by having even more pairs with the maximal separation. As a
result, the Zp symmetry used in the orbifold projection breaks spontaneously, and we see
that surprisingly large N orbifold equivalence is not valid for ma = 0,7 = 1, and the 3D
theory is not equivalent to a continuum 4D theory.

For generic values of ma and r, the minimization of Vg is a complex problem and
better dealt with numerically. The result of such a minimization is summarized in figure 1.
There we can see a rich phase diagram as a function of ma and r, particularly in the
region away from 1 > ma, where we are probing lattice-scale physics in the 4D theory.
The purple region is the Zyr symmetric phase; other colors denote less symmetric phases.
Note that at small values of ma, where we might hope the orbifold equivalence might hold
and our 3D theory would correspond to a continuum 4D theory with fermions, the fermion
contribution is unable to prevent the breaking of Zr and the large N equivalence between
the 3D and the 4D theory is lost. Even at ma = 0 and r = 0, where the 4D theory
would have Dirac fermions with lattice doublers, which should help stabilize the center,
the eigenvalues are in the totally collapsed phase, and Zr is broken. A similar behavior was
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observed in one-loop calculations of effective potentials in matrix models of M-theory [18];
the breaking of the symmetry there, like here, was interpreted as a failure of the model to
“generate” spacetime dimensions.

5 Discussion

The breaking of Zr may seem at odds with similar calculations done in the past [19], for
instance the calculations suggesting that adjoint fermions protect orbifold equivalence and
allow large N dimensional reduction. However, there is no contradiction: we would only
expect the 3D effective potential to match the 4D effective potential for the trace of a
Polyakov loop wrapping the compact direction if the two theories were large N equivalent.
If the two theories are not equivalent, the 3D and 4D effective potentials do not have to
agree even if they are effective potentials for the same order parameter. As it happens,
however, the effective potential that we have calculated in the 3D is for different order
parameters than in the 4D calculations.

In the 4D calculations in the literature, SU(/V) Yang-Mills theory [13, 19, 20], possibly
with some matter content, was taken to be defined on R? x S!, with the size of the com-
pactified dimension equal to L, and the calculations were done in the continuum limit. To
determine whether large N volume-independence holds down to volumes small compared
to the strong scale, the fate of the Zy center symmetry was determined by looking at the
effective potential for the Polyakov loop wrapping the compact spatial direction. These cal-
culations have shown that adjoint fermions protect the center symmetry at small volumes.

Such 4D continuum calculations do not however answer the question of whether in
a large N lattice theory with adjoint fermions (discretized along at least the compact di-
rection), one can discard all but one lattice site along one direction and obtain a large N
equivalent theory, which is the relevant question for determining whether orbifold equiv-
alence holds and large N dimensional reduction works. For that, one must examine the
realization of the relevant discrete symmetries in the higher and lower dimensional theo-
ries, and it is precisely the latter question that our calculation of the effective potential
in the 3D theory addresses. Our results suggest that the relevant symmetries in the 3D
theory break spontaneously, so that one does not obtain a large N equivalent theory in a
full dimensional reduction even in the presence of light adjoint fermions.

However, there remains a major puzzle. There is a region in parameter space, which is
colored purple in the phase diagram in figure (1), where the full Zyp symmetry is unbroken,
and orbifold equivalence appears to hold, at least at first glance: all of the conditions for
large N orbifold equivalence appear to be met in this region of parameter space. However,
in this region the value of the fermion bare mass (equal at this order to the renormalized
mass) is of the order of the cutoff ma ~ 1 and the fermions should effectively decouple from
the low energy dynamics of the 4D theory. The 4D theory should then be pure Yang-Mills
in the continuum limit. That is, again, contrary to any expectation.

To get further insight into our results, we can compare a quantity that can be calculated
in both the 3D and 4D theories, which is the effective potential for a Wilson loop wrapping
the compact direction in the 4D theory. For small enough L < 1/A, when it is legitimate
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to compute the effective potential in the semiclassical expansion, the effective potential can
be calculated in both the 3D and 4D theories.

In the pure Yang-Mills 4D theory, the effective potential for the Polyakov loop can be
calculated by summing over the small fluctuations of the gauge field around a background
gauge field with a non-trivial Polyakov loop:

ei91
s e’i@z
Ay =A360 + A, Az =diag(61/L, -+ ,0x/L), Qz=P oA =

The result, after gauge-fixing similar to eq. (3.14) in 3D, is [13, 19, 20]

V4D~ZZ/d3klog<k2 <27m+9—9)> ZZ( )

i,j=1n=1 i,j=1n=1
cos(n 9—9))
~ o (e ) L 5 5 et
t,j=1 i,j=1n=1
1 <1
— > —ltr Qp2, (5.2)
n=1

where we used the (-function regularization to define the sum over the Kaluza-Klein modes,
and used Hurwitz’s formula in the next to last equality. The result can be written in two
useful ways [13], one making the sum over the winding numbers of the Polyakov loop
explicit and the other making the sum over the eigenvalues explicit:

2 L gnp
Vip = = aga 2l 951
n=1

N

1 8t N2 5 92
Vio = ~571 | 1 _Z'Z 0; — 0,1%([0; — 0;] — 272)? | . (5.3)

> |

s

where [a] = a mod 27. It is clear from these expression that the potential is minimized
when all eigenvalues collapse to one common value. Each flavor of adjoint Majorana
fermions makes an equal and opposite contribution to that of the gauge bosons to the
effective potential, so that adding one flavor of Dirac fermions, or equivalently two flavors
of Majorana fermions, will simply have the effect of flipping the sign of the effective poten-
tial above, making it repulsive. The resulting potential favors Zy symmetric distributions
of eigenvalues of the Polyakov loop.
We can also calculate the effective potential for the Polyakov loop from the 3D theory.
In fact, the calculation of the effective potential we have done above is general enough that
it already gives the answer in the appropriate sector. If we consider a ¢g that takes the
block-diagonal form
ePilp
$o = , (5.4)
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where 1y is the I'xT" identity matrix, I'p; = 6;, then ¢! = Q3 and, in the region of parameter
space where the large N equivalence holds, the effective potentials for the eigenvalues of
()3 calculated in the 4D and 3D theories should be the same. Let us look at the effective
potential for tr 23 as calculated from the 3D theory by making making the appropriate
substitutions in eq. (3.14). In the continuum limit, where I' — co,a — 0, with I'a = L
fixed, eq. (3.14) reduces to

N
Ve (Q3) = G;T > (x/iyez- — ;1% — (8(mL)* + 12mL(amr — 1)|6; — eij)) . (5.5)
1<j

Note that the term with the Wilson term coefficient disappears in the continuum limit of
a — 0, as it must. However, this effective potential does not match eq. (5.3) for any value
of m. In particular, the two results clearly do not match for m = 0.7/a,r ~ 1, which is
in the region in parameter space where Zr symmetry is preserved, and large N orbifold
equivalence would naively be expected to hold. Probably the most important difference
between the two effective potentials is the lack of anything like a sum over Kaluza-Klein
modes in the 3D theory, while such a sum appears naturally in the 4D calculation of the
effective potential.

In our calculation of the effective potential of the 3D theory, we took the scalar field
¢ to be close to a block diagonal form. But it was the one-off-diagonal terms in eq. (2.5)
that generated the derivative terms in the “extra” dimension. This means that we had
essentially no chance to see derivatives of the KK modes arise in our computation, and thus
each of the terms in the sum over the KK modes is independent of the KK mode number
n. The sum over n reduces in our case to a factor of I', with the |6; — 6;|> dependence
agreeing between the 4D and the 3D calculation. Of course, if large N orbifold equivalence
were to hold, the behavior of gauge-invariant observables in the common sector of the two
theories should agree regardless. The fact that the effective potential for center symmetry
breaking calculated in the 4D theory and in the 3D theory do not agree even in the region of
parameter space where Zr symmetry is unbroken suggests that the equivalence is breaking
down for some other reason that is not currently understood.

One way to reconcile the continuum 4D calculations with our construction is the fol-
lowing.® The 4D calculations suggest that L can be reduced arbitrarily as long as L > a,
that is, within the region of validity of a continuum approximation. A theory like the 3D
theory described here can be seen as the result of reducing L all the way to L = a (even
though what we consider in this paper is dimensional expansion from 3 to 4 dimensions
and L =T'a > a at all times). From that point of view, the results stemming from our 3D
theory are lattice artifacts. That would suggest that a YM theory with adjoint fermions
may have large N volume independence which works for arbitrarily small L in physical
units, but the resulting volume-reduced theory must still have a large number of lattice
points in the compactified direction, which look like a large number of independent fields
form the 3D point of view. Viewing such a “reduced” theory as being 3D does not seem
to provide any advantage over just working with the original 4D theory.

5We thank M. Unsal for conversations on this point.
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The challenge of unraveling this situation is left for future work. A working orbifold
equivalence allowing large N equivalence between interesting theories such as Yang-Mills
theory (with matter or without) in different numbers of spacetime dimensions would be
extremely useful. Unfortunately, as we have seen in this paper, it is not yet clear how to
make such an equivalence work.
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6 Postscript

After the completion of the present work and partially triggered by it, Bringoltz [21] ana-
lyzed similar questions from a different perspective. His analysis sheds some light on the
issues we discuss above, and we would like to comment on it here.

Ref. [21] pointed out that the 3D reduced model in eq. (2.1) is non-renormalizable
in perturbation theory, and that the linear divergences that arise in calculating the one-
loop effective potential for Zyr breaking” must be absorbed by counterterms coming from
certain relevant operators that should be added to the action in eq. (2.1) and not, as we
erroneously assumed before, by terms already contained in the action. For instance, in the
bosonic sector the effective potential given in eq. (3.9) evaluated with a ultraviolet cutoff
A is proportional to

4w (A AM? M3
—— | dkk*log(k® — M?) = — ——+0A? 6.1
o [ dRRIos(r? — 0 =~ — T o), (61)
where M? = 3—2 sin? (%) , and we have discarded a field-independent divergent constant.
The linear divergence is absorbed by
dl/d%\trqﬁy? (6.2)

and not, as previously assumed, by a wave function renormalization. When fermions are
included two counterterms are required at one-loop

dl/d3m|tr¢|2 +d2/d3x|tr¢2|2 : (6.3)

"Refs. [21, 22] note that if the “extra” dimension is shrunk to two or more points (instead of one), the
linear divergence we discussed here disappears. This indicates that a continuum 3D model with two unitary
adjoint scalars should not have the linear divergence we are discussing. This is essentially an example of
the Little Higgs construction [23] popular in electroweak symmetry breaking model building.
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Figure 2. The figure on the left shows the Zyr phase diagram following from numerical mini-
mization of the one-loop effective potential with only the first two double-trace terms included with
coefficients dy,ds. The figure on the right shows the phase diagram with the full tower of double
trace terms, with all double trace terms having the same coefficient d, with varying bare fermion
mass m and Wilson term coefficient » = 1. In both figures NI' = 25 and Ny = 1.

It seems then that an interesting question is whether the theory in eq. (2.1) supplemented
by these two terms can be equivalent to a four-dimensional gauge theory. For this to be
true two conditions need to be met. First, Zyr must not break. Secondly, the theory
should be orbifold projected into a theory equivalent to the four-dimensional gauge theory
of interest.

The coefficients dy, do contain regulator-dependent divergent pieces, which serve to can-
cel the one-loop UV divergences, and also contain arbitrary finite pieces that contribute to
the effective potential at tree level. The values of the finite pieces can affect the realization
of Znr symmetry. Thus, to check the first condition above, we added the two double trace
terms in eq. (6.3) and varied their coefficients while checking the center symmetry realiza-
tion using the methods used above in section 4. We were unable® to find double-trace term
coefficients that would protect center symmetry in the theory with Ny # 0. As is illus-
trated in figure 2 for Ny = 1, the center symmetry breaks to Zs, even when the UV-finite
parts of the double trace coefficients are large.”

This result is expected by general considerations. The stabilization of center symmetry
using double trace terms was discussed extensively in ref. [4]. As argued there, it is expected
that if the coefficients of the terms in eq. (6.3) are chosen appropriately, one can prevent
center symmetry breaking with tr¢ and tr¢? as order parameters. However, no matter

8The exception is if NT is prime and one allows the double-trace term coefficients to scale with NT,
which is not what one wants to do for large N equivalence.

9The situation for N r = 0 is somewhat different at one loop, since a direct numerical check shows that
the two double trace terms in eq. (6.3) can indeed prevent center symmetry breaking. However, we do not
expect this to hold beyond the one-loop approximation, and the full tower of double trace terms is likely
to be necessary to protect center symmetry beyond one loop even for Ny = 0.
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what their coefficients are, these two double trace terms would not generally be expected
to prevent the breaking of center symmetry with higher powers of ¢ as order parameters,
for instance breaking with tr¢® as an order parameter. (This is breaking pattern referred
to as Zs in section 4). As argued by Unsal and Yaffe [4], to fully protect center symmetry
using double trace deformations, one would need to include a whole tower of double trace
terms, with all powers of ¢ up to NT'/2:

NT/2

> dg / d3x|tre|? . (6.4)
k=1

This suggests the addition of the full tower of double-trace operators to the action, whether
or not their presence is required by renormalization at one-loop. Once the full tower of
double trace terms in eq. (6.4) is included, center symmetry can easily be protected by
choosing appropriate coefficients for the double-trace terms, as is illustrated in figure 2.1°

We now turn to addressing the second condition: whether the theory with the added
double-trace operators orbifolds into a theory equivalent to a four-dimensional gauge theory.
It can be argued that the theory with the added double-trace terms and d ~ 1/L3 =
1/(Ta)? is equivalent to a theory without them on two accounts in the large volume limit.
First, in the large L limit the deformation vanishes. Second, as argued ref. [4], their
contribution to the dynamics at large volume in the large N limit are suppressed by 1/N?2.
In our case, the double-trace terms orbifold into

dpr / Bz |tr¢™ ? — Td,p / d3z tr| Q"2 (6.5)

where trQ) = tr¢' is a traced Wilson loop wrapping the compact direction in the 4D theory.
Recall that terms like [tr¢?|?,p ¢ {mI',m € N} do not survive the volume-expanding
orbifold projection. Thus it is clear that the two double trace terms whose coefficients
contain regulator-dependent UV divergent pieces at one loop do not appear in the orbifolded
theory. Also, it is clear that at one loop, the coefficients dj with & > 2, some of which
survive the orbifold, are independent of the regulator of the 3D theory. Since we want dj,
to make contributions to the one-loop effective potential of comparable size to the other
terms in the action (that is, finite in the large I" and large N limits), we must generically
take dj, = fi/a®, where f), are numbers independent of I' and N.

The resulting four-dimensional double-trace terms clearly do not vanish in the large
L = T'a limit, and the first argument given above for the irrelevance of the double-trace
terms in the large-volume 4D theory no longer applies. However, the second argument,
involving the 1/N? suppression, will still work provided that the large N limit is taken
before the continuum limit and before the large volume limit: the limits do not commute.
With this ordering of limits, once the values of coefficients dj are chosen appropriately,
the 3D theory will be orbifold-equivalent at large N to 4D YM with adjoint fermions with

Onterestingly, one can also preserve center symmetry by putting the full tower of double trace terms
except for all terms that contain ¢*', where k are integers. This suggests that one can protect the center
symmetry with a double trace deformation that does not survive the orbifold projection. The implications
of this curious result are left to future work.
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double trace deformations, and at large volume L and large N, this latter theory will be
equivalent to the desired 4D theory, which is simply 4D YM with adjoint fermions.

The upshot of the above discussion is that to prevent center symmetry breaking and
have a 3D theory equivalent to a 4D gauge theory in the large IV limit it is necessary to
add the full tower of double-trace operators to the three-dimensional action and rely on
the 1/N? suppression of the double-trace operators in the large N limit.

Ref. [21] approached the problem not from a continuum theory as we did in this
paper but worked with a lattice version'! of Yang-Mills with adjoint Wilson fermions with
a variable number of sites. When the number of sites in all directions is large, taking
the continuum limit one obtains continuum 4D Yang-Mills theory with adjoint fermions,
plus higher dimensional operators. On the other hand, when the number of sites in the
three non-compact directions is large, but there is only one link in the compact direction,
the continuum limit gives the theory discussed in the present paper, with the link in the
compact direction denoted by ¢, supplemented by the double-trace operators in eq. (6.3).
In the construction of ref. [21] there are no explicit double-trace operators in the action.
However, if one desires to discuss the continuum limit of the lattice theory, one can view
our continuum theory as the low energy effective theory for it. From this perspective, the
numerical values of dy,ds in the effective theory are determined from the lattice theory,
and are dependent on the particular lattice reqularization used. Working in perturbation
theory it was shown that two double-trace operators are indeed generated at one-loop level.
As argued before, they are not enough to suppress Zyr breaking.

At first glance, it might appear that there is some tension between these results and
that of ref. [21]. In that work, Zyr breaking was tested in the lattice-regularized theory
with adjoint fermions (which assigns some particular values to the double trace coefficients
in eq. (6.3)), and it was argued that Zyr did not break at one loop. This conclusion was
based on comparing the potential energy of the Z;,Zs, and Zyr symmetry realizations,
and the Z 1 symmetric realization was found to be preferred to the other two tested. If, as
suggested by our results above, the center symmetry in the lattice-regulated theory breaks
with tr¢? with an order parameter, this would not have shown up in the analysis of ref. [21].
If, on the other hand, Zyr breaking does not occur after all in the lattice-regulated theory,
consistency with our results above would suggest that the lattice-regulated theory with
fermions actually generates the whole double-trace tower at one loop in the continuum
limit, rather than just the first two terms considered in ref. [21].

We now finally return to the question raised in the title of this paper: do fermions
save large N dimensional reduction? Working with the 3D continuum theory, which is the
choice we investigated here, the answer is no. The preservation of center symmetry depends
entirely on the coefficients of the double-trace terms in the action, which generically have
UV-divergent pieces that depend on the choice of regulator, and finite parts that can be
chosen freely by hand from the EFT point of view. We see that while it appears that
(happily) large N dimensional reduction can be saved, fermions do not participate in the
rescue: The fermions themselves are not enough to protect center symmetry of the 3D

See also ref. [24] for a related numerical study of a reduction of the 4D theory to one plaquette.
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theory, and just turning on adjoint fermions is not enough to make the 3D and 4D theories
orbifold equivalent.

The answer to the same question is more subtle in the lattice version of the 3D theory
which was investigated in ref. [21]. There, it was argued that the lattice regulator of
the theory with Wilson fermions effectively assigns certain UV-divergent values to the
coefficients of the first two double-trace terms that turn out to be sufficient to protect
center symmetry in the 3D lattice theory with one site in the “extra” direction. If this
is indeed the case, the center symmetry of the 3D lattice theory is saved by UV effects
associated with the fermion discretization, rather than the infrared physics of the fermions,
as might have been expected given the results found in the analogous 4D continuum theory
in ref. [13] with adjoint fermions in small volumes.
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